Lagrangian Curves in a 4-dimensional affine symplectic space

نویسندگان

  • Emilio Musso
  • Evelyne Hubert
چکیده

Lagrangian curves in R entertain intriguing relationships with second order deformation of plane curves under the special affine group and null curves in a 3-dimensional Lorentzian space form. We provide a natural affine symplectic frame for Lagrangian curves. It allows us to classify Lagrangrian curves with constant symplectic curvatures, to construct a class of Lagrangian tori in R and determine Lagrangian geodesics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Symplectic Applicability of Lagrangian Surfaces 3 2

We develop an approach to affine symplectic invariant geometry of Lagrangian surfaces by the method of moving frames. The fundamental invariants of elliptic Lagrangian immersions in affine symplectic four-space are derived together with their integrability equations. The invariant setup is applied to discuss the question of symplectic applicability for elliptic Lagrangian immersions. Explicit e...

متن کامل

Symplectic Applicability of Lagrangian Surfaces

We develop an approach to affine symplectic invariant geometry of Lagrangian surfaces by the method of moving frames. The fundamental invariants of elliptic Lagrangian immersions in affine symplectic four-space are derived together with their integrability equations. The invariant setup is applied to discuss the question of symplectic applicability for elliptic Lagrangian immersions. Explicit e...

متن کامل

Symplectomorphism groups and isotropic skeletons

The symplectomorphism group of a 2–dimensional surface is homotopy equivalent to the orbit of a filling system of curves. We give a generalization of this statement to dimension 4. The filling system of curves is replaced by a decomposition of the symplectic 4–manifold (M,ω) into a disjoint union of an isotropic 2–complex L and a disc bundle over a symplectic surface Σ which is Poincare dual to...

متن کامل

Complete systems of invariants for rank 1 curves in Lagrange Grassmannians

Curves in Lagrange Grassmannians naturally appear when one studies intrinsically ”the Jacobi equations for extremals”, associated with control systems and geometric structures. In this way one reduces the problem of construction of the curvature-type invariants for these objects to the much more concrete problem of finding of invariants of curves in Lagrange Grassmannians w.r.t. the action of t...

متن کامل

ar X iv : m at h . SG / 0 40 44 96 v 2 1 3 Ju l 2 00 4 Symplectomorphism groups and isotropic skeletons

The symplectomorphism group of a 2-dimensional surface S is homotopy equivalent to the orbit of a filling system of curves on S. We give a generalization of this statement to dimension 4. The filling system of curves is replaced by a decomposition of M into a disjoint union of an isotropic 2-complex L and a disc bundle over a symplectic surface Σ Poincare dual to a multiple of the form. We show...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013